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SOME ASPECTS OF NON-EQUILIBRIUM FLOWS 

SUMMARY 

I n  t h i s  paper some of t h e  general  f ea tu res  of non-equilibrium flow 

a r e  discussed. I n  p a r t i c u l a r ,  v i b r a t i o n a l  r e l axa t ion  i s  discussed i n  

d e t a i l .  This  case  i s  somewhat simpler than d i s soc ia t ion  and ioniza t ion  

but  it i l l u s t r a t e s  some of t h e  main new features of non-equilibrium 

flow. Those aspects  of two-dimensional and axisymmetric flow behind 

shock waves a r e  examined a n a l y t i c a l l y  which y i e l d  s i g n i f i c a n t  information 

without r equ i r ing  numerical so lu t ion  of t h e  governing equations. 

The thermodynamics of a v i b r a t i o n a l  re laxing gas i s  discussed. The 

condit ions f o r  s imulat ing flows a r e  noted. Croccots  theorem and t h e  

c h a r a c t e r i s t i c  equations a r e  derived. Then a simple method of obta in ing 

t h e  i n i t i a l  gradients  of t h e  flow var i ab les  behind a shock i s  shown. 

These gradients  are used i n  d iscuss ing two p a r t i c u l a r  flows. An exact  

so lu t ion  f o r  flow over a cusped body i s  obtained. Flow over a wedge 

near t h e  t i p  and f a r  from t h e  t i p  i s  considered. It i s  found t h a t  far 

from the t i p  a boundary l a y e r  type phenomenon occurs. 
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There have been many recent publications considering the  flow of 

a gas not i n  thermodynamic equilibrium. No complete bibliography w i l l  

be given here, but several  papers per t inent  t o  the  present work w i l l  be 

mentioned. 

Probably the  f i r s t  work on t h i s  subject ,  f o r  the  case where there  
a w n  ehnnlr r.rn~r-r, 4 -  +Ln -Pl nrr  
CLIC auucn w a v c a  111 clllc IIUW, 

is CL c -C ~ , L L  --a m 1 
b ~ l a b  UL DC L L L ~  ttllu .l-eller . A qua l i t a t i ve  

discussion of flow over a wedge was given by Ivey and c l ine2  i n  which the  

departure from thermodynamic equilibrium was due t o  vibrat ional  re laxat ion 

(qnma ,-,l,om+-i+o+4Trn -".nc.7,1+" 7 - 4 7  1 LA -4 T r n -  LA.."- -A- ef a diat~mic gas. vul,Lb ,u~lAuLuauLvc , cDuLuD WL,& ", ~ L V C I A  L~CL-C L U L  

t h i s  case.) An approximation t o  the  hypersonic flow over a sphere, where 

the  departure from equilibrium i s  due t o  dissociat ion,  was considered by 
3 Freeman . Flows with small disturbances were considered by goere and 

4 
Gibson , and i n  particular, the  flow over a t h in  wedge. 

I n  a pure diatomic gas a t  reasonable temperatures, th ree  processes 

can cause departure from equilibrium: vibrat ional  exci ta t ion,  dissociat ion,  

and ionization.  I f  the  relaxation times f o r  these processes a r e  suf- 

f i c i e n t l y  d i f fe ren t ,  they may be t r ea t ed  separately. The magnitude of the  
a + ' f ' n n + m  nr? +LC, C l  e r r  1 - 2r-n + - 4-L--- --------- 
L A  A L L  u u  u L L =  A L V W  V a l  L a v A c o  uut: b u  brlc r e  pxucesses is quite di f fe ren t .  

The gross e f f ec t s  a r e  d i r e c t l y  r e l a t ed  t o  the  energy necessary t o  exc i te  

the  new degrees of freedom. 

In  t h i s  paper vibrat ional  re laxat ion only is  considered. This i s  

somewhat simpler t o  handle than dissocia t ion and ionization,  but should 

illustrate some of the  main f e a t l ~ r e s  of non-eq'c?.ilibril~, flow. Becguse the 

smallest non-equilibrium e f f ec t s  r e s u l t  from vibrat ional  exci ta t ion,  some , 

of t he  r e s u l t s  obtained here d i f f e r  l i t t l e  f'rom the  r e s u l t s  of calcula t ions  

based on equilibrium flow; o r  differences are significmt only i n  a 

negl ig ibly  small region of flow. It i s  hoped that the methods used here 

can be applied, with almost equal ease, t o  other non-equilibrium processes. 



Only certain asbects of L--- 3 2  - - - n 4  ---I A 4 + n P l  ATTO 
b WU'UUC113 AUllUd. U J l U  C W 1 3 J l l U I l C  UL I L  L ru W J 

are examined in this paper; these will not involve nvaerical solution of 

the differential equations. After a discussion of the appropriate thermo- 

dynamics of a vibrational relaxing diatomic gas, the governing equations 

are transformed to yield the generalization of Croccor s theorem which 

relates the entropy change to the vorticity. Next a derivation and dis- 

cussion of the characteristic equations are given. Using the appropriate 

shock transition relations and the equations of motion, the streamwise 

gradients of the flow variables are obtained employing natural coordinates 

(as in&jcated by Sternbere5 for equilibrium flows. ) These prove be 

quite useful in discussing two particular flows; namely, two dimensional 

flow over (i) a cusped body which supports a straight shock wave, and 

(ii) a wedge. 

For (i) an exact solution is obtained that requires only two 

quadratures, For (ii) the  flow is examined near the t i p  and far from the 

t ip .  At the tip the shock curvature and the wedge pressure gradient 

can be obtained rather simply using the gradient functions. Far from 

t h e  t i p  the flow m u s t  be divided i n t o  two regions. To a first approxi- 

mation a large region of the flow is the equilibrium wedge flow, but 

there is a small region near the shock wave where relaxation is im- 

portant. Mathematically this small region exhibits a boundary layer type 

phenomenon. An indication is given of a mems of obtaining the  next 

approximat ion. 



R n c i n o l l ~ r  +ha A 4 f f a ~ - a n n n  uuu IGC~~ALJ U L L L  ULL I LA LAILL in t he  descriptisns of eq6ilibr l;;? 

and non-equilibrium flows r e s u l t s  from differences i n  t he  thermodynamic 

behavior of the  gas, the  dynamic aspects being the  same. A c l ea r  explan- 

a t i o n  of en a2propr ia te  model of a non-eqcilibrii~m system (and t he  f i ~ ~ ~ r . = y  
6 

assumptions) was given by Wood and Kirkwood . The same model w i l l  be used 

here. 

For the case of a gas sub3ect t o  vibrat ional  re laxat ion t h e  degrees 

of freedom a re  divided i n to  two classes:  the  ac t ive  ( t r ans l a t i on  and 

r o t a t i o n ) ,  f o r  w h i c h  t.he s l~bscr ip t  a w i l l  he i18edj and t h e  internel o r  - - - - - - - - 

iner t  (v ib ra t ion) ,  f o r  which the  subscript  i w i l l  be used. it i s  assumed 

t h a t  l oca l  thermodynamic equilibrium e x i s t s  within the  c lasses  but  not 

between them. The r a t e  a t  which equilibrium i s  approached i s  governed 

+ 4 l - .  - L n,,,,.-P*-a 3 %  - L A  ,C CL- -LA&, * - - - - f - - L l - -  uy Ei  I a u c  c q u a u l u l l  W L L L L I I  L ~ L I I  uc D ~ C L L I I C U  L I ~  U C L ~ I I ~  UI C / L ~ C  a t x ~ b t :  V U L L U U L ~ : ~  

of  each c lass .  There a r e  other assumptions, t o  be mentioned l a t e r ,  which 
b are  convenient t o  make. The model presented i s  intermediate between a 

m g c r g s ~ ~ ~ i ~  m i c r e s ~ g n i  YAY P i l ~ c r - ~ i  La.UYUI I.y n+.i V I V I I  nn . 
From the  assumption t h a t  the  Gibbs r e l a t i on  holds f o r  the  "a" c l a s s ,  

it ~ Q ~ ~ Q T A S  kh& atthe e h r ~ p y  change of t h e  1'51t1 c l a s s  i s  

where the  perfect  gas law is assmied 

- It is assuxed that  t h e  "it' class is specified by i t s  temperature, l l i ,  

so t h a t  t h e  entropy change i s  

The t o t a l  entropy change i s  then 



The r a t e  equation assumed is the  l inear  fom. 
- 

,-- - - - - 1 - - - - + 4 n -  + i m n  nnA P. (T ) 1s the  value of Ei i f  where T i s  r;ne X ~ L - ~ U L V L L  - 'i a 
----  x.1 +LA Jay.+7rn+;,rP equilibrium ex is ted  a t  the  temperature Ta. r-or a LLUW blLG UGL A V - W A .  - 

i n  (2 .3 )  i s  t he  subs tan t ia l  derivative.  

The l i nea r  form of t he  r a t e  equation presupposes that the d e p a r t u r  

frnm equilibrium i s  not too great .  It i s  exact i f  the  v ibra to rs  a r e  

quantized harmonic o s c i l l a t o r s  .' The f'unctional r e l a t i on  E~(T, )  , fo r  
- = Y . A ~ ~ Y . + . ;  Pa Of pn.8efi various gases, can be obtained from xaules UL ~1~ vAu- - - 7 

With t he  assumption of harmonic o sc i l l a t o r s ,  E (T ) can be calculated from i a 

where Kr i s  the  cha rac t e r i s t i c  v i b r a t i o n d  temperature. This ~ G X Z  -%ill 

be used when some spec i f ic  flows a r e  calculated.  
v 

It i s  convenient, 

-- - - ---,-, +, ,,Y.,,, a1 nno hnth variables E and T, The t'nough not n e c t : a ~ a ~ - y ,  uw b- r ----C) -- --- i I 

lllWI1lVLIAb VUbL--u j-- - has functional  dependence E I ( ~ i ; ,  fo r  the case of Ln-nni" n ' " 4 1 1 s a f n r ~  

t he  same form a s  E (T ) i n  (2.4). i a 

For future  reference the  foliowing w e l l  kii~'wTl r e la t ions  W e  

recorded. For equilibrium flow Tn - = Ti - and 

where 

Also 



In t h i s  ~ e c t i ~ ~  t h e  eqi~+,ior;s ~f motion of a p . ~ e  & i , t ~ i i i i ~  

gas subject to vibrational relaxation will be discussed. The eqyation 

of state (2.1) is assumed. By a minor modification the results can 

he e~?efided %Q $he C R ; S ~  nf a miu,tl=e ~f f i i ~ t c ) m i ~  gas- -&ere =pay- =ne 

constituent relaxes. It is necessary to know the effect of the other 

constituents on this one. This case would arise, in practice, if the 

relaxation time of one constituent is much shorter  tl?_&n tha.11. of the 

others. This would be the case for air since the relaxation time of 

oxygen is about one-fifteenth that of nitrogen. This extension, how- 

ever, will not be included here. 

The equations will be written in natural coordinates (s, n), 

where s and n are distances along the streamlines and their orthog-1 
+wo 4 a r r - k n n - t  e a  narr-afiC?.r+fil w r  mt.- 0 At., & - -- -----I L >  
UA u J G ~  VUA AGO 3 A ~ o r ~ &  UA v c r y  . IIIG r UL-IIL UI u~t: cyua u u r l u  UL currrserVt;Lslun 

of momentum,.mass, and energy do not change because of relaxationj they 

are 

1 ap - 1 as a~ + E sin Q 
p x + -  q z + x  Y = 0 

where q is velocity, 8 is the velocity direction, e = 0 or 1 for two- 

dimensional or axisymmetric flow? respectively; y is t he  cn~r~nR,t.c. 
-fiH-fi+?;)4m-.1 n- 4- +LA n r r d  - AS' ------I----- I 
~ G A  p ~ ~ ~ u s c ; - a ~  u u   LAC -u.r UL DYUYIII b ~ y  j h = C -k Ei t p/ p i f 3  the 

va a 
enthalpy; and h is the stagnation enthalpy (constant along streamlines). t - 
These four equations, to@&er with the equation of state ( 2 , l )  and the 

coordinates the rate equation (2.3) is 



The relaxation time, T, is a function of pressure and temperature. 

In the following it is assumed to be constant. This would be a poor 

assumption if there are large changes in pressure and temperature; however, 

in the regions of flow considered changes of appreciable magnitude in 

these quantities do not occur. 

For the above six equations, the conditions for similar flows over 

geometrically similar bodies are easily deduced. In addition to the 

requirements of fixed Mach number and ratio of specific heats, r u/J must 
also be fixed for similar flows. Here U and 1 are representative velocity 

and length, respectively. This type of dimensionless ratio was used by 
3 Freeman . Experimentally the appearance of the new len&h scale N makes 

simuiation more difficult. hdyticaiiy it means that the sknpie "similar- 

ity solutions" (wedge flow and Prandtl-Meyer expansion) no longer exist. 

A useful relation for equilibrium flows is Croccois theorem.? It 

relates the entropy gradient to the vorticity. For a relaxing gas this 

+ i n  ran be derived as follows, The expressinn for entropy .I. b4-U U I V A A  b - A  

change (2.2) can also be written 

- - using (3.4) to eliminate h, 
r 

From this the directional derivatives of S in the s and n directions 

are evaluated. After elimination of the pressure by use of the momentun 

equations (3.1) and (J.2), these derivatives are expressible as 

where 5 is the vorticity, 



Note that aht/& = 0, but ah /an = 0 only for isoenergetic flows. If - t. 
the flow is in equilibrium, Ta = Ti, (3.6) gives the result of constant 
entropy along strediyes ,  ( 3.7) reduces to t h e  usual form of Crocco t s 

theorem. For three-dimensional unsteady flow the vector form of Crocco's 

theorem is 

3 T' 
where is the vorticity vector and V is the gradient operator. An 

equivalent result, but different the*modynamic vmisbles,  was given ' 
L,, nu---- uy nruer .  

10 

It is convenient to eliminate p and p from the equations of motion 

and introduce S. The resulting equations for isoenergetic flow are - 

where 

Thus only the "frozen" Mach number enters. Note that (3.9) and (3.10) are 
S ~ P ~ Y  (3.6) and (3 .7)  while (3.8) comes from (2.1), (3.1, (3.31, and 
the eqression f o r  &!a~= The an-hnwns pm n 8, Tat Ei, md S. 

It is easily verified by the standard technique that the above partial 

differential equations are hyperbolic if Ma ) 1. Solving the memlii& 
e ~ u ~ t i ~ i i  for tine four charac%eristic directions, one obtains the streamline 



. > - - - - r a A -  --..-r-a +-**-n nnii +ha ~ m n h  Ifnec hac~ i l  Ma; tkat  i s ,  the  arrec bluu GULUALGU uwrc;G Q*AU U L I ~  A-AUYIA -I---- ----- 
-1 Mach angle i s  p = :: i :l j i / ' ~ *  j .  he equations of motion i n  ciima~tei-istic 

form are ( 3. l o ) ,  ( 3 . 1 )  and t h e  following two equations: 

- E q sin 8 sin p + s i n  p [IEi(~a) - EJ co t  p D+ q + q D+ Q = 
Y T C- T - - 

pa a 

--I- ---- A -  + n m.yla A P P ~ , - , c ~ ~  by 
W I l e r e  L uycr-a UUA u y+ - ubrrAA-u - 

D = alas + t an  II a/an; + - - 

t h a t  is ,  D, indicates  d i f fe ren t ia t ion  aiong Yne ~ a c h  i i n e a  h c l i n e d  a t  

+ p t o  the-streamline. The appearance of t he  "frozen" Mach l i n e s  has - 
6'10 A numerical calculat ion,  u s h g  the  been m t e d  by ether slt.hnrs; 

cha rac t e r i s t i c  form, fo r  fi"~ a x&ge is 4 -  -wn-fi- ~ i 1 1  be A I L  P A  UejL buv u r r u .  n s--r. 

reported i n  another paper. R 



4. GRADIENTS BEHIND A 'SHOCK WAVE 

A general method f o r  computing t h e  flow variable gradients behind 

a shock wave i n  a two-dimensional flow was developed by ~homas'l f o r  a 

gas not subject  t o  relaxatMn ef fec t s .  A stm-pler method, using natural 

coordinates, was indicated by Sternberg. For two-dimensional flow the  

gradients a r e  par t i cu la r ly  useful j  .e.g., the  slope of t h e  streamlines at  
i ,-I,, a +  a ,  + a -i--- L -  a -  - -  - -  I L L -  a r r u r ; a  p u l a -  y u u l r , ~  :,A but: r l u u u w a p r l  p~arlt: l;tlrl ut: uu~ulncu l r u m  b n e u  \ but: 

so-called "hedge-hog" introduced by ~usemann). It is found t h a t  t h e  ' 

gradients a r e  proportional t o  the  shock wave curvature. 

For axisymmetric flow the  sarpe gradients can be computed, but they 

are  l i nea r  combinations of t he  two curvatures: Kw in t h e  meridianal and 

l/y i n  the  azimuthal planes. This f a c t  limits t h e  usefulness of the  
12  gradients f o r  t h i s  case. Extensive tabulations have been made recent ly  

of the  coeff ic ients  of K a n d  lIy; with t h e s e  the  gradients can be computed 
W 

eas i ly .   h he two-dimensional result i s  obtained by setting the coef f ic ien t  

of iIy equal t o  zero.) 

For a uniform flow which i s  i n  equilibrium i n  f'ront of a shock 

wave but not behind it, the  gradients w i l l  depend on the  re laxat ion time. 

Behind the  shock the  flow variables are computed from the  shock re la t ions  

for constant specific heats; i. e . , t h e  frozen r e l s t i ons  . Ei does n o t  

change across a shock.' To obtain expreqsione fo r  the  gradients,  the  

equations of motion a r e  combined with the  shock re la t ions;  t he  normal 

derivatives are expressed in terms of derivatives along the  shock waye 

and along t h e  s i r e d i n e .  Referring t o  Figure i, 

a/& = cos A 318s + s i n  )I a/an 

where a i s  distance along the  shock wave, f3 i s  t h e  shock angle, and 

= = 8 .  Since 

t he  normal derivative can be wri t ten 



- LP~: - 1  L~ULXKU. u c r - r v a u r v ~ o  a--*--+q-r-n q n  U A  \ / . w /  f 7 R\ kqd (3.9) m e  eliminated by use of (4.1); 

&,/as = 0, m a  &&p, h@/ap, etc.  can be compuiied from the shock - 
relations.  The following two equations then resul t :  

where 

and a l l  quant i t ies  are  evaluated immediately behind the shock wave. 

Solving (4.2) and (4.3) f o r  aejas and adas, one obtains 

\ f i l l -  rn 

\rl b"" f i j r u  
(4.4) 

F2 
= ( s i n  Q cot  L)/D 

- 
r I /(a D s in  h )  

L m L "  

The Fi are functions of Mm , p, and 7, and have been tabulatedY for 
I -1 

;LO, and s in  ( i / ~ ~ ~ )  & @  L , / A  
7 = 1.4, 1.1= Ma n i c e  



By use of (3.1), ( 3 . 3 ) ,  and (3.4) the gradients of p, p, and TR 
- 

can be obtained, Since f, and D are  posit ive,  the e f fec t  of relaxation 
I 

is  t o  increase the  streamline curvature &/as and decrease the  velocity 

gradient for  given Kw and y. For reasonably strong shocks at ordinary 

T-- , Ei ( T ~ )  can be neglected compared t o  E, (T-) . 
w I u 

Even for  two dimensional flows it is  seen thdt  the  gradients w i l l  

not be simply proportional t o  K--; t h i s  w i l l  l i m i t  t h e i r  usefulness. Some 
W 

1 4 a nn z .r i  1 1 be m&e ~f these gradients n next + g ~  c h q t e r s  sLyyA.Lba u r u r r  w r r s  



5 . AN EXACT SOLUTION 

A s  mentioned previously, the  solution fo r  flow over a wedge i s  

no longer simple when t h e  gas behind the  shock i s  relaxing; the  flow 

behind t he  shock i s  not uniform and the  shock i s  not s t r a igh t .  This 

m n w  w i l l  be considered in t he  next. section, H e r e  it will be shown that * & W "  ..a-- 

an exact solut ion can be ob tdned  f o r  two-dimensional flow over a cusped 

body ( the  curvature becoming zero asymptotically) which supports a 

s t r a igh t  shock wave. 

From (4.4), w i t h  E = 0,  it can be seen t h a t  i f  the  shock i s  l oca l l y  

s t r a igh t ,  K = 0 ,  the  curvature of the streamline at  t he  shock can be 
W 

eas i l y  calculated.  Lett ing K- = &/as, a convenient non-blmensional 
ij 

measure of streamline curvature i s  the following quantity: 

where 

A p lo t  of the  expression i n  (5.1) i s  shown i n  Figure 2 fo r  a range of 

values of Moo and f3. For t he  case of pure N2 with Too = ~OO'K, = 60°, 

= 6, where (2.4) was used with By = 3336O~, it i s  found t h a t  Q = 41.1 
-I 

and Ks = 5.5 ftoL. The value of T was taken from Reference 8. 

Since (5.1) has no physical  length scale  in it, the  shock wave could 

be s t r a igh t  over any f i n i t e  distance and Ks would be t h e  same everywhere. 

Considerin g ae -nner $iicln a n-ilrnefical solution of the  chk-acteriatic 

equations would proceed, s t a r t i n g  from a s t r a igh t  shock, one can see t h a t  

a l l  the  flow var iables  depend only on the  distance along the  normal t o  

the shock, A "shock oriented" coordinate system 5 ,  7 is  introduced, a s  

shown in Figure 3, and a solution with flow variables independent of -q i s  

sought. The streamlines w i l l  be p a r a l l e l  curves with i n i t i a l  curvature 

given by Kg i n  (5.1) and i n i t i a l  slope calculated from the  frozen shock 

re la t ions .  If the  s t r e d i n e s  a r e  physically meaningful, any one of them 

can be chosen a s  the body. Reflecting t h i s  curve through the  f r e e  stream 



direct ion gives a pointed cusped body which supports a s t r a igh t  shock 

wave, Anticipating a r e s u l t  from the  next chapter, t he  curvature of 

t h e  body should approach zero and t h e  angle of the body should appraach 

t h e  equilibrium wedge angle appropriate t o  t he  given shock angle, These 

expectations a r e  ver i f ied  by the  solution obtained below. 

Equations (3.8) t o  (3.12) a re  transformed t o  t he  ( 5 ,  7) system by 

\I\- 
U ~ S  = s i n  (p - Q) 3/2~ + cos (p - 8 )  2/39 

= - cos ( 8  - Q) a / a ~  + sin (p - Q) a/$ 
Set t ing a l l  7 derivatives equal t o  zero and l e t t i n g  

* = B - Q ,  

A A 1 A ,"..,+a A,,* 

UllC U U btl U 1 3  bllt; I U l l U W  1116 CYUU bIUI l i> .  

2 (q - 1 )  s i n  9 2 + q cos & -  9 s in  9 aEi x - 3- (5.3) 
C ~ a  Ta 

q sin $ ~Q/&s + cos 9 aq/& = 0 

T a as135 + - T i  a ~ ~ / a 5  - 0 

On elimination of 6, (5.4) can be wri t ten 

dq/q = - t an  d@ 

Integrating, 

s cos Jr = Qf '9" (B  - Q ~ ) ,  

where t he  subscript  f denotes values computed from the  frozen shock 

relations, 



f i  --.~.-a-- I CK 7 )  ,.,.++h + . h ~  +fnrentiatea form of (5.7) &"d ~ O ~ l u ~ l l l l &  [ J . w &  VL* "*a- --A- -- --- 

e l b i n a t h g  6, a f i re*  order ordinary d i f f e r e n t i d  equation i s  obtained. 

The r e s u l t  of in tegrat ing t h i s  i s  
1 

3 2 
= rTn + (%-/R) s i n  (p - ~~j C U ~  ( p  - " ' %a" f 

U - f l  - -f 
2 2 (5.9) - (~F/R)  cos (@ - Qf) t an  $ 

-,--I* --1 ,+i have  h ~ ~ n  q p l i e d .  E ,  i s  obtained where again yne frozen t i r l u G a  I r ; L a u r v + A u  - - - --- 
1 

from (5 .7) ,  with the  a i d  of (5.8) and (5.9). 
1 

With a l l  t he  var iables  expressed i n  tenfig of 8,  (5 .6)  can now be 

used t o  obtain Q a s  a function of 6 .  Thus 

Q 

The equation of the  body i s ,  i n  parametric A form (parameter Qb), 

7 
= a T cas ( 9  - e f )  

"b =f 1 
wf 

The above in tegrat ions  a r e  ca r r ied  out u n t i l  P (T is eqide1 t~ Ei; +;h& 
i a 

is, equilibrium i s  a t t a ined ,  In pr inciple ,  kb and qb become i n f i n i t e  for  



t h i s  condition; actually,  the  curvature of the  body approaches zero 

ra ther  quickly and the  gas is, for  a l l  prac t ica l  purposes, i n  equilibrium 

a t  f i n i t e  5. and qb. 
b 

A representative r e su l t  (obtained by numerical integration) of the  
0 above formulas i s  shown i n  Figure 4 fo r  N2 a t  Moo = 8, p = 65 , T~ = 3 0 0 ~ ~ .  

Equations (2.4) was used t o  obtain E%(T*), with Qv = 3336'~. The angle 

of the  body changes about three degrees from Qf = 43.6' t o  Qe = 46.7', 

the  l a t t e r  being the wedge angle t ha t  corresponds t o  a shock angle of 

65' when the equilibrium' shock rela t ions  a r e  used. For the  l a t t e r  

re la t ions  see, e.g., Reference 13. The la rges t  change i n  angle occurs 

when 0 andM are  close t o  the  conditions fo r  shock detachment i n  
f 00 

frozen fiow. 

Thus an exact calculation (with two quadratures) of the  flow with 

a s t ra igh t  shock wave i s  possible. These r e su l t s  can be used t o  check 

approximate methods of computing flows. ,In the  next chapter t h i s  exact 

solution w i l l  be used t o  investigate a portion of t he  flow f a r  from the 

t i p  of a wedge. 

It is  desirable t o  define some measure of the distance over which 

relaxation e f f ec t s  a re  important. As i n  defining t he  thickness of a 

viscous boundary layer,  there  is  some a rb i t rw ines s  i n  any definition 
4 of a relaxation distance. Following Moore and Gibson , one such 

def ini t ion would be 

,,L ,, , w r l w - t :  E is *he f of E 
i 1' if E i s  replaced 

w e  ieq. 
by E~(T, ) ,  t he  value of t he  i n t eg ra l  would not be changed much, but the  

integration would be easier.  Calling t h i s  releuation distance Er, 



where Q~ is the wedge angle. For the ~&rtic~il.ar example 

c i t ed  above 

5, = .136 q, T = 300 qf 7 

No reason was given fo r  the par t icular  definit ion of a relaxation distance 

i n  Reference 4; it is  analogous t o  the definition of displacement thick- 

ness of a viscous boundary layer,  In t h e  next chapter a different me thd  

of obtaining a distance i s  given which r e su l t s  i n  a coefficient of r qm 

t h i r t y  per cent higher than the one given for  Sr. 



6.  y m  am A Q-, 

2 Several years ago Ivey and Cline discussed the  two-dimensional 

flow over a wedge. 'Pnis was mainly a qual i ta t ive discussion. However, 

it was pointed out t h a t  a t  the t i p  the  shock wave should have the  an@e 

appropriate t o  the  frozen shock relat ions,  and far from the  t i p  the 
1 z 

(smaller) =gle sgpropriate t o  the equilibrium shock relations-'. Also 

the  shock curve is concave downward. Here some fur ther  quantitative 

r e su l t s  fo r  t h i s  flow are  shown. 

It seems most natural  t o  use polar coordinates ( r ,  8 )  with the  

or igin a t  the  t i p  and $ measured Prom the free strenm q r e c t i ~ ~ .  Tras- 
forming Equations (3.8) t o  (3.12), with E = 0, t o  polar coordinates gives 

2 
( M  - l ) ( r  COB a + sin o + sb a - ccE aqqj:  

= i s / c  T,) ( r  cos a a ~ ~ / a r  + s i n  a a~,/a$) i6 . i j  
pa 

q2ir cos a a ~ / a r  + s i n  a he/?@) + q( r  sin - cos aq_/+)  

= - T, (r s in  a as/& - cos a &/a#) 
n r =  7 

\P. /\A\ T_ (2 cos a + sin a oJ/ap) = 

To consider +.he fl~:: near thc ti? a iiiiiiezsionless w i a b i e ,  r /qm, 

i a  introduced. Unt i l  the  appropriate boundary conditions fo r  wedge flow 

are introduced, the  following discussion applies t o  any two-a~menai~rrg!. 



flow ( e a g ., the  modifications to prandtl-Meyer f lacr over a corner) . 
Assume tha t  all the flow variables can be expanded i n  a power ser ies  

in r / ~ q ~ ;  then it can be shown that ,  t o  within O ( r / r q o o )  terms, the 

flow is frosen. Fl-- D-- -P 4-LA-A r a n 4  n o  ~ . T n ? r l  A be Lne rur-rrr UL u r l c a c  DGAAGP WU-u 

( M ~  
- 1) sin % aqo/a$ - g COB @A u a~- / a#  U = 

0 

cos , aqn/a$ - qn sin a a ~ ~ l a 8  = 
V - - 0 

2 
Ma 

s in  a. = 1, 
0 

which i s  appropriate fo r  corner flow, or  

which, a f t e r  applying the wedge boundary  condition^, givee f rozen flov 

over a wedge. To within an error  0(r/7qm ) , the shock wave i s  s t raight .  

The next s tep would be t i e  solut ion of the &iffereiitial equations 

f o r  q,, Q,, etc.  Although t h i s  i s  feasible,  it will not be done because 
I I 

the most interest ing information can be more eas i ly  obtained from the  

gradient functions of Chapier 4. SLice, f o r  the '..eGe, &/$- - g ,  the  

curvature of the shock at the tip i s ,  from (4.4), 

The frozen values of the variables are used in the r ight  hand side. In 

non-dimensional form 



A p lo t  of the expression i n  (6.10) is  shown i n  Figure 5 for  a r w g e  of 

and p. For the case of pure N with T = ~ O O K ,  f3 = 60°, M = 6, 2 00 00 

= 1 atm., 

where (2.4) was used with Qv = 3336' K; the  value of z was taken from 

Reference 8, and F1 from Reference 12. For the same conditions, except 

= 10, Kw i s  220 f t - l ,  which means tha t  the curvature would pot be 

detectable i n  any ordinary scale of experiment. 

With Kw known, the i n i t i a l  velocity gradient along the  wedge can 

be computed from (4.5), and then the pressure gradient from (3.1). A 

convenient non-dimensional form fo r  the  pressure coeff ic ient  i s  

where 

A plo t  of the expression i n  (6.11) i s  shown i n  Figure 6. For the  above 

example ( M ~  = 6) &Jas = 16.0 f t  . -1 
Thus the shock curvature and the r a t e  of change of the flow 

variables on the  wedge a t  i t s  t i p  can be obtained rather  easily;  i f  the  

de t a i l s  of the flow are  desired, the ser ies  expansion method should be 

used. Unfortunately, the same method, i .e.  employing the  gradient functions, 

cannot be used t o  investigate cone flow. The use of natural  coordinates 

at  the tip of a cone is  impossible because of the nature of the  s ingular i ty  

there ,  The ser ies  expansion method could be used, but the d i f f e ren t i a l  

equations fo r  the  f i r s t  order terms would be much more d i f f i c u l t  t o  solve 

than those of the wedge case. 



To consider t he  flow far f'rom the  t i p ,  a s e r i e s  expansion procedure 

is again adopted, but nm ~q is the varj&jle. TI-- -------+*fi- 1 uaeuupbluu that 
00 

t he  flow var iables  a r e  analyt ic  i n  t h i s  var iable  w i l l  be seen t o  be not 

uniformly valid.  The difference between t h i s  case and the  previous one 

can be seen by examining (6.4) . When r / ~ q ~  approaches zero, t he  right 

hand s ide  vanishes and nothing unusual happens. When 7qO0 /r approaches 

zero, the l e f t  hand s ide  vanishes and t h e  r e s u l t  i s  that Ei (T,) = Ei; 
vmt is, A"- "1 --- 

but= LIUW is 'a r i m .  Since deri-~~ative:: have b e e ~  lest, 

a boundary layer  type phenomenon (singular perturbation) must be 

expected. The order of t he  system (6.1) t o  (6.4) i s  reduced from four 

t o  three by t h i s  limiting process. Also the  r e s u l t  t h a t  t he  flow i s  

i n  equilibrium i s  inconsistent  with t he  boundary condition Ei = Ei at  

t he  shock. w 

If the flow variables are expanded i n  a se r i e s  of the  form 

the  zeroth order terms f o r  q and 8 w i l l  s a t i s f y  equations of the  same 

form as (6.6) and (6.7) except with zero superscripts instead of sub- 

scr ip ts  and Ma replaced by the equilibrium Mach number. Thus, t o  

within an e r ror  O(rqm/r), the  flow i s  equilibrium wedge flow. The 

shock i s  s t r a igh t  and the  flow is  uniform and p a r a l l e l  t o  the  wedge. 

It i s  helpf'ul t o  keep in mind here the  procedure fo r  obtaining the  

viscous flow over a body: (i) the  non-viscous flow i s  computed ignoring 

one boundary condit ion ( i . e . , t a g e n t i a l v e l o c i t y  e q u d e  zero) ,  (ii) the 

s t ruc ture  of the  apparent discont inui ty  (vortex sheet)  a t  the  body i s  

inveetigated using t he  boundary layer  approximation, (iii) the  non- 

viscous flow over the  body plus displacement thickness i s  computed, e tc .  

For the  present problem steps  analogous t o  (i) and (ii) will be taken. 

Note t h a t  here pa r t  of t he  problem is t o  determiz theboundary; t h a t  

is,  the  shock wave, 



In Figure 7(a)  a streamline and the  f i c t i t i o u s  "equilibrium shockf', 

predicted by the  f i r s t  term of the ser ies  expansion, are  shown i n  dashed 

l ines ,  The t rans i t ion  across the shock is governed by the  equilibrium 

shock relations.  The angle of the equilibrium shock i s  fixed by Moo and 

the  wedge angle. Extended, it must go through the t i p  in order t o  sa t i s fy  

the conservation of mass. The actual shock (so l id  l ine )  must be displaced 

upstream of the  equilibrium- shock, but i t s  curvature must vanish t o  within 

an error  0(.rqm/r). To t h i s  approximation the non-equilibrium flow behind 

a straight  shock describes the flow near the shock but far from the t i p  

( ~ i g u r e  7(b)).  This flow is  obtained from the exact solution of Chapter 

5. Thus the  "boundary layer", or  rapid t ransi t ion region, is determinable. 

Compared t o  the equilibrium region between the shock and the body t h i s  

t ransi t ion region is negligibly small. It and the shock merge in to  the 

equilibrium shock. 

The question remains: how t o  join the two regions; or  rather,  how 

f a r  i s  the shock displaced from the equilibrium shock? This is  answered 

by again invoking the conservation of mass. A t rans i t ion  region stream- 

l i n e  must asymptotically approach the equilibrium streamline tha t  

originates a t  the same point of the f ree  stream flow (see Figure 7(b)). 

The displacement of the shock from the equilibrium shock i s  denoted by 4. 

From the condition defining 4 it i s  eas i ly  ahown tha t  

4 = b tan pe/ tan  Be - t an  (pe - B e g  C (6.12) 

where p is  the equilibrium shock angle, Qe is the wedge angle, and b i s  
e 

the distance (measured perpendicular t o  the  shock) between the shock and 

the asymptote t o  the t rans i t ion  streamline (see Figure 7(b) or  3) .  There 

is  no convenient expression for  b, but it is easi ly determined graphically 

when equations (5.U) are  plotted. For the conditions of the example of 

an exact solution given i n  Chapter 5,  viz., Be = 65') Qe = 46.701 M~ = 8, 
i n  N ~ ,  (6.12) gives 



whereas €j = .15 qoo" In  Figure 7(c)  t h e  two regions a r e  shown according 
r 

t o  t h i s  approximation; i .e., t o  within an e r ro r  0(7qm/r) .  The equilibrium 

shock i s  shown extended t o  t he  t i p .  The next approximation, with an e r ro r  
2 

O ( T ~  /r) , would show t h e  downstream edge of t h e  t r an s i t i on  region t o  be 
00 

curved, 

This next approximation has not yet been worked out, The following 

is  an ou t l ine  of how t h i s  might be done. By developing gradient  f'unctions 

for  equilibrium flow, t h e  curvature of the equilibrium shock wave could 
L- uubained. -I.+ Then let the c shock have this saxe C I X V E % ~ X P .  For this 

curved shock, a shock or iented coordinate system could be used t o  attempt 

t o  ge t  t h e  next approximation t o  t h e  t r an s i t i on  region. 
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